Detection of mild dyspnea from pairs of speech recordings

Sander Boelders, Venkata Srikanth Nallanthighal, Vlado Menkovski, Aki Härmä

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

9 Citaten (Scopus)

Samenvatting

Shortness of breath, or dyspnea is a condition of the cardiopulmonary system that may be caused by, for example, a heart or lung disease, or physical load. In this paper, we explore techniques of detecting mild dyspnea directly from conversational speech, for example, in a telehealth application. We demonstrate with a collection of speech recordings before and after a light physical exercise that a siamese neural network, when presented examples of the two conditions, can detect the difference between two speech signals. This shows that this signal can be detected using data-pairs, removing the need for ratings of severity or the distinction of separate classes.

Originele taal-2Engels
Titel2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's4102-4106
Aantal pagina's5
ISBN van elektronische versie9781509066315
DOI's
StatusGepubliceerd - mei 2020
Evenement2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2020) - Virtual, Barcelona, Spanje
Duur: 4 mei 20208 mei 2020
https://2020.ieeeicassp.org/

Congres

Congres2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2020)
Verkorte titelICASSP 2020
Land/RegioSpanje
StadBarcelona
Periode4/05/208/05/20
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Detection of mild dyspnea from pairs of speech recordings'. Samen vormen ze een unieke vingerafdruk.

Citeer dit