Detecting Privacy, Data and Control-Flow Deviations in Business Processes

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

7 Citaten (Scopus)
73 Downloads (Pure)

Samenvatting

Existing access control mechanisms are not sufficient for data protection. They are only preventive and cannot guarantee that data is accessed for the intended purpose. This paper proposes a novel approach for multi-perspective conformance checking which considers the control-flow, data and privacy perspectives of a business process simultaneously to find the context in which data is processed. In addition to detecting deviations in each perspective, the approach is able to detect hidden deviations where non-conformity relates to either a combination of two or all three aspects of a business process. The approach has been implemented in the open source ProM framework and was evaluated through controlled experiments using synthetic logs of a simulated real-life process.
Originele taal-2Engels
TitelIntelligent Information Systems - CAiSE Forum 2021, Proceedings
RedacteurenSelmin Nurcan, Axel Korthaus
UitgeverijSpringer
Hoofdstuk10
Pagina's82-91
Aantal pagina's10
ISBN van elektronische versie978-3-030-79108-7
ISBN van geprinte versie978-3-030-79107-0
DOI's
StatusGepubliceerd - 15 jun. 2021

Publicatie series

NaamLecture Notes in Business Information Processing
Volume424 LNBIP
ISSN van geprinte versie1865-1348
ISSN van elektronische versie1865-1356

Vingerafdruk

Duik in de onderzoeksthema's van 'Detecting Privacy, Data and Control-Flow Deviations in Business Processes'. Samen vormen ze een unieke vingerafdruk.

Citeer dit