Detecting Points in Integer Cones of Polytopes is Double-Exponentially Hard

Łukasz Kowalik, Alexandra Lassota, Konrad Majewski, Michał Pilipczuk, Marek Sokołowski

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)

Samenvatting

Let d be a positive integer. For a finite set X ⊆ R d, we define its integer cone as the set IntCone(X):= { P xX λx · x | λx ∈ Z >0 } ⊆ R d. Goemans and Rothvoss showed that, given two polytopes P, Q ⊆ R d with P being bounded, one can decide whether IntCone(P ∩ Z d) intersects Q in time enc(P) 2O(d) · enc(Q) O(1) [J. ACM 2020], where enc(·) denotes the number of bits required to encode a polytope through a system of linear inequalities. This result is the cornerstone of their XP algorithm for Bin Packing parameterized by the number of different item sizes. We complement their result by providing a conditional lower bound. In particular, we prove that, unless the ETH fails, there is no algorithm which, given a bounded polytope P ⊆ R d and a point q ∈ Z d, decides whether q ∈ IntCone(P ∩ Z d) in time enc(P, q) 2o(d) . Note that this does not rule out the existence of a fixed-parameter tractable algorithm for the problem, but shows that dependence of the running time on the parameter d must be at least doubly-exponential.

Originele taal-2Engels
Titel2024 Symposium on Simplicity in Algorithms, SOSA 2024
RedacteurenMerav Parter, Seth Pettie
UitgeverijSociety for Industrial and Applied Mathematics (SIAM)
Pagina's279-285
Aantal pagina's7
ISBN van elektronische versie9781713887171
DOI's
StatusGepubliceerd - 2024

Financiering

This work is a part of project BOBR (\u0141K, KM, MP, MS) that has received funding from the European Research Council (ERC) under the European Union\u2019s Horizon 2020 research and innovation programme (grant agreement No. 948057). A. Lassota was supported by the Swiss National Science Foundation within the project Complexity of Integer Programming (207365).

FinanciersFinanciernummer
European Research Council
Horizon 2020 Framework Programme948057
Horizon 2020 Framework Programme
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung207365
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Detecting Points in Integer Cones of Polytopes is Double-Exponentially Hard'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit