Depth estimation from SEM images using deep learning and angular data diversity

Tim Houben, Maxim Pisarenco, Thomas Huisman, Hans Onvlee, Fons van der Sommen, Peter de With

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)

Samenvatting

There is a growing need for accurate depth measurements of on-chip structures. Since Scanning Electron Microscopes (SEMs) are already regularly being used for fast and local 2D imaging, it is attractive to explore the 3D capabilities of SEMs. This paper presents a comprehensive study of depth estimation performance when single- or multi-angle data is available. The research starts with an analytical line-scan model to show the major contributors of the signal change with increasing height and angle. We also analyze Monte-Carlo scattering simulations for height sensitivity on similar structures. Next, we validate the depth estimation performance with a supervised machine learning model and show correlation with the previous studies. As predicted by the sensitivity studies, we show that the height prediction greatly improves with increasing tilt angle. Even with a small angle of 3 degrees, a threefold average performance improvement is obtained (RMSE of 16.06 nm to 5.28 nm). Finally, we discuss a preliminary proof-of-concept of a self-supervised algorithm, where no ground-truth data is needed anymore for height retrieval. With this work we show that a data-driven tilted-beam approach is a leap forward in accurate height prediction for the semiconductor industry.
Originele taal-2Engels
TitelMetrology, Inspection, and Process Control XXXVII
RedacteurenJohn C. Robinson, Matthew J. Sendelbach
UitgeverijSPIE
Pagina's1-9
Aantal pagina's9
ISBN van elektronische versie9781510661004
ISBN van geprinte versie9781510660991
DOI's
StatusGepubliceerd - 27 apr. 2023
EvenementSPIE Advanced Lithography + Patterning 2023 - San Jose, Verenigde Staten van Amerika
Duur: 26 feb. 20232 mrt. 2023

Publicatie series

NaamProceedings of SPIE
Volume12496
ISSN van geprinte versie0277-786X
ISSN van elektronische versie1996-756X

Congres

CongresSPIE Advanced Lithography + Patterning 2023
Land/RegioVerenigde Staten van Amerika
StadSan Jose
Periode26/02/232/03/23

Vingerafdruk

Duik in de onderzoeksthema's van 'Depth estimation from SEM images using deep learning and angular data diversity'. Samen vormen ze een unieke vingerafdruk.

Citeer dit