Depth estimation from a single SEM image using pixel-wise fine-tuning with multimodal data

Tim Houben (Corresponding author), Thomas Huisman, M. Pisarenco, Fons van der Sommen, Peter H.N. de With

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

11 Citaten (Scopus)
234 Downloads (Pure)

Samenvatting

To support the ongoing size reduction in integrated circuits, the need for accurate depth measurements of on-chip structures becomes increasingly important. Unfortunately, present metrology tools do not offer a practical solution. In the semiconductor industry, critical dimension scanning electron microscopes (CD-SEMs) are predominantly used for 2D imaging at a local scale. The main objective of this work is to investigate whether sufficient 3D information is present in a single SEM image for accurate surface reconstruction of the device topology. In this work, we present a method that is able to produce depth maps from synthetic and experimental SEM images. We demonstrate that the proposed neural network architecture, together with a tailored training procedure, leads to accurate depth predictions. The training procedure includes a weakly supervised domain adaptation step, which is further referred to as pixel-wise fine-tuning. This step employs scatterometry data to address the ground-truth scarcity problem. We have tested this method first on a synthetic contact hole dataset, where a mean relative error smaller than 6.2% is achieved at realistic noise levels. Additionally, it is shown that this method is well suited for other important semiconductor metrics, such as top critical dimension (CD), bottom CD and sidewall angle. To the extent of our knowledge, we are the first to achieve accurate depth estimation results on real experimental data, by combining data from SEM and scatterometry measurements. An experiment on a dense line space dataset yields a mean relative error smaller than 1%.
Originele taal-2Engels
Artikelnummer56
Aantal pagina's16
TijdschriftMachine Vision and Applications
Volume33
Nummer van het tijdschrift4
DOI's
StatusGepubliceerd - 1 jul. 2022

Vingerafdruk

Duik in de onderzoeksthema's van 'Depth estimation from a single SEM image using pixel-wise fine-tuning with multimodal data'. Samen vormen ze een unieke vingerafdruk.

Citeer dit