Density-Guided Label Smoothing for Temporal Localization of Driving Actions

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

4 Citaten (Scopus)

Samenvatting

Temporal localization of driving actions plays a crucial role in advanced driver-assistance systems and naturalistic driving studies. However, this is a challenging task due to strict requirements for robustness, reliability and accurate localization. In this work, we focus on improving the overall performance by efficiently utilizing video action recognition networks and adapting these to the problem of action localization. To this end, we first develop a density-guided label smoothing technique based on label probability distributions to facilitate better learning from boundary videosegments that typically include multiple labels. Second, we design a post-processing step to efficiently fuse information from video-segments and multiple camera views into scene-level predictions, which facilitates elimination of false positives. Our methodology yields a competitive performance on the A2 test set of the naturalistic driving action recognition track of the 2022 NVIDIA AI City Challenge with an F1 score of 0.271.
Originele taal-2Engels
Titel2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's3173-3181
Aantal pagina's9
ISBN van elektronische versie978-1-6654-8739-9
DOI's
StatusGepubliceerd - 23 aug. 2022
Evenement2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022 - New Orleans, Verenigde Staten van Amerika
Duur: 19 jun. 202224 jun. 2022
https://cvpr2022.thecvf.com/

Congres

Congres2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022
Verkorte titelCVPRW 2022
Land/RegioVerenigde Staten van Amerika
StadNew Orleans
Periode19/06/2224/06/22
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Density-Guided Label Smoothing for Temporal Localization of Driving Actions'. Samen vormen ze een unieke vingerafdruk.

Citeer dit