Samenvatting
Temporal localization of driving actions plays a crucial role in advanced driver-assistance systems and naturalistic driving studies. However, this is a challenging task due to strict requirements for robustness, reliability and accurate localization. In this work, we focus on improving the overall performance by efficiently utilizing video action recognition networks and adapting these to the problem of action localization. To this end, we first develop a density-guided label smoothing technique based on label probability distributions to facilitate better learning from boundary videosegments that typically include multiple labels. Second, we design a post-processing step to efficiently fuse information from video-segments and multiple camera views into scene-level predictions, which facilitates elimination of false positives. Our methodology yields a competitive performance on the A2 test set of the naturalistic driving action recognition track of the 2022 NVIDIA AI City Challenge with an F1 score of 0.271.
Originele taal-2 | Engels |
---|---|
Titel | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022 |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Pagina's | 3173-3181 |
Aantal pagina's | 9 |
ISBN van elektronische versie | 978-1-6654-8739-9 |
DOI's | |
Status | Gepubliceerd - 23 aug. 2022 |
Evenement | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022 - New Orleans, Verenigde Staten van Amerika Duur: 19 jun. 2022 → 24 jun. 2022 https://cvpr2022.thecvf.com/ |
Congres
Congres | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022 |
---|---|
Verkorte titel | CVPRW 2022 |
Land/Regio | Verenigde Staten van Amerika |
Stad | New Orleans |
Periode | 19/06/22 → 24/06/22 |
Internet adres |