Defect correction and nonlinear multigrid for the steady Euler equations

P.W. Hemker, B. Koren

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureHoofdstukAcademic

1 Downloads (Pure)

Samenvatting

In this chapter we describe an accurate, efficient and robust technique to solve the steady Euler equations for inviscid flow by a nonlinear multigrid method. The discretization is a finite volume one, using the Godunov scheme, with Osher's approximate Riemann solver as the numerical flux function. Nonlinear FAS multigrid cycling is used to directly solve the first-order discrete equations. Defect correction is used to obtain higher-order accuracy. The technique can be extended to the N avier-Stokes equations, and can be combined with the adaptive grid refinements.
Originele taal-2Engels
TitelSolution techniques for large-scale CFD problems
RedacteurenW.G. Habashi
Plaats van productieChichester
UitgeverijWiley
Pagina's273-291
Aantal pagina's442
ISBN van geprinte versie0-471-95810-7
StatusGepubliceerd - 1995

Vingerafdruk Duik in de onderzoeksthema's van 'Defect correction and nonlinear multigrid for the steady Euler equations'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Hemker, P. W., & Koren, B. (1995). Defect correction and nonlinear multigrid for the steady Euler equations. In W. G. Habashi (editor), Solution techniques for large-scale CFD problems (blz. 273-291). Wiley.