Deep Root Music Algorithm for Data-Driven Doa Estimation

Dor H. Shmuel, Julian P. Merkofer, Guy Revach, Ruud J.G. van Sloun, Nir Shlezinger

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

9 Citaten (Scopus)
3 Downloads (Pure)

Samenvatting

Direction of arrival (DoA) estimation is a fundamental task in array processing. A popular family of DoA estimation algorithms are subspace methods, which operate by dividing the measurements into distinct signal and noise subspaces. Subspace methods, such as Root-MUSIC, require the sources to be non-coherent, and are considerably degraded when this does not hold. In this work we propose Deep Root-MUSIC (DR-MUSIC); a data-driven DoA estimator which augments Root-MUSIC with a deep neural network applied to the empirical autocorrelation of the input. DR-MUSIC learns how to divide the observations into distinguishable subspaces, thus leveraging data to cope with coherent sources, low SNR and limited snapshots, while preserving the interpretability and the suitability of the model-based algorithm.
Originele taal-2Engels
TitelICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
UitgeverijInstitute of Electrical and Electronics Engineers
Aantal pagina's5
ISBN van geprinte versie978-1-7281-6327-7
DOI's
StatusGepubliceerd - 5 mei 2023
EvenementICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) - Rhodes Island, Griekenland
Duur: 4 jun. 202310 jun. 2023

Congres

CongresICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Verkorte titelICASSP 2023
Land/RegioGriekenland
StadRhodes Island
Periode4/06/2310/06/23

Vingerafdruk

Duik in de onderzoeksthema's van 'Deep Root Music Algorithm for Data-Driven Doa Estimation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit