Deep reinforcement learning for inventory control: A roadmap

Robert N. Boute (Corresponding author), Joren Gijsbrechts, Willem van Jaarsveld, Nathalie Vanvuchelen

Onderzoeksoutput: Bijdrage aan tijdschriftArtikel recenserenpeer review

93 Citaten (Scopus)
262 Downloads (Pure)

Samenvatting

Deep reinforcement learning (DRL) has shown great potential for sequential decision-making, including early developments in inventory control. Yet, the abundance of choices that come with designing a DRL algorithm, combined with the intense computational effort to tune and evaluate each choice, may hamper their application in practice. This paper describes the key design choices of DRL algorithms to facilitate their implementation in inventory control. We also shed light on possible future research avenues that may elevate the current state-of-the-art of DRL applications for inventory control and broaden their scope by leveraging and improving on the structural policy insights within inventory research. Our discussion and roadmap may also spur future research in other domains within operations management.

Originele taal-2Engels
Pagina's (van-tot)401-412
Aantal pagina's12
TijdschriftEuropean Journal of Operational Research
Volume298
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - 16 apr. 2022

Bibliografische nota

Publisher Copyright:
© 2021 The Author(s)

Vingerafdruk

Duik in de onderzoeksthema's van 'Deep reinforcement learning for inventory control: A roadmap'. Samen vormen ze een unieke vingerafdruk.

Citeer dit