Deep Reinforcement Learning for Adaptive Parameter Control in Differential Evolution for Multi-Objective Optimization

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Citaten (Scopus)
262 Downloads (Pure)

Samenvatting

Evolutionary algorithms (EA) are efficient population-based stochastic algorithms for solving optimization problems. The performance of EAs largely depends on the configuration of values of parameters that control their search. Previous works studied how to configure EAs, though, there is a lack of a general approach to effectively tune EAs. To fill this gap, this paper presents a consistent, automated approach for tuning and controlling parameterized search of an EA. For this, we propose a deep reinforcement learning (DRL) based approach called ‘DRL-APC-DE’ for online controlling search parameter values for a multi-objective Differential Evolution algorithm. The proposed method is trained and evaluated on widely adopted multi-objective test problems. The experimental results show that the proposed approach performs competitively to a non-adaptive Differential Evolution algorithm, tuned by grid search on the same range of possible parameter values. Subsequently, the trained algorithms have been applied to unseen multi-objective problems for the adaptive control of parameters. Results show the successful ability of DRL-APC-DE to control parameters for solving these problems, which has the potential to significantly reduce the dependency on parameter tuning for the successful application of EAs.
Originele taal-2Engels
TitelThe 2022 IEEE Symposium Series on Computational Intelligence (IEEE SSCI)
RedacteurenHisao Ishibuchi, Chee-Keong Kwoh, Ah-Hwee Tan, Dipti Srinivasan, Chunyan Miao, Anupam Trivedi, Keeley Crockett
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's804-811
Aantal pagina's8
ISBN van elektronische versie978-1-6654-8768-9
DOI's
StatusGepubliceerd - 30 jan. 2023
EvenementIEEE Symposium Series on Computational Intelligence, IEEE SSCI 2022 - Singapore, Singapore
Duur: 4 dec. 20227 dec. 2022

Congres

CongresIEEE Symposium Series on Computational Intelligence, IEEE SSCI 2022
Verkorte titelIEEE SSCI
Land/RegioSingapore
StadSingapore
Periode4/12/227/12/22

Vingerafdruk

Duik in de onderzoeksthema's van 'Deep Reinforcement Learning for Adaptive Parameter Control in Differential Evolution for Multi-Objective Optimization'. Samen vormen ze een unieke vingerafdruk.

Citeer dit