Deep reinforcement learning-based prosumer aggregation bidding strategy in a hierarchical local electricity market

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)
76 Downloads (Pure)

Samenvatting

This paper investigates the application of deep reinforcement learning (DRL) algorithm for the decision-support of a prosumer aggregation in a hierarchical local electricity market (LEM) comprising a peer-to-peer (P2P) market and a corrective market. The agent first submits bids/asks to the P2P market where prosumer aggregations are able to trade electricity directly with each other. After that, the agent participates in the corrective market, where the market operator formulates the corrective market as an AC optimal power flow (OPF) problem to ensure the system is operated within its operational limits. A DRL algorithm, namely Twin Delayed Deep Deterministic Policy Gradient (TD3), is used to find the strategic bidding strategy. The algorithm is tested on a real medium-voltage distribution grid to evaluate the effectiveness of the strategic bidding method. The result of the case study demonstrates that the agent can derive trading strategies to obtain high profits based on the TD3 algorithm.
Originele taal-2Engels
Titel2023 Asia Meeting on Environment and Electrical Engineering, EEE-AM 2023
RedacteurenZbigniew Leonowicz, Erika Stracqualursi
UitgeverijInstitute of Electrical and Electronics Engineers
Aantal pagina's6
ISBN van elektronische versie979-8-3503-8106-1
DOI's
StatusGepubliceerd - 25 jan. 2024
Evenement1st Asia Meeting on Environment and Electrical Engineering - Hanoi, Vietnam
Duur: 13 nov. 202315 nov. 2023

Congres

Congres1st Asia Meeting on Environment and Electrical Engineering
Verkorte titelEEE-AM 2023
Land/RegioVietnam
StadHanoi
Periode13/11/2315/11/23

Financiering

This publication is part of the research program ‘MEGAMIND – Enabling distributed operation of energy infrastructures through Measuring, Gathering, Mining and Integrating grid-edge Data’, (partly) financed by the Dutch Research Council (NWO), through the Perspectief funding instrument under number P19-25.

FinanciersFinanciernummer
Nederlandse Organisatie voor Wetenschappelijk OnderzoekP19-25

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Deep reinforcement learning-based prosumer aggregation bidding strategy in a hierarchical local electricity market'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit