Deep Proximal Unfolding For Image Recovery from Under-Sampled Channel Data in Intravascular Ultrasound

Nishith Chennakeshava, Tristan S.W. Stevens, Frederik J. de Bruijn, Andrew Hancock, Martin Pekař, Yonina C. Eldar, Massimo Mischi, Ruud J.G. van Sloun

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

2 Downloads (Pure)

Samenvatting

Intravascular UltraSound (IVUS) is a key tool in guiding the treatment and diagnosis of various coronary heart diseases. However, due to its nature IVUS is a very challenging modality to interpret, and suffers from a severely restricted data transfer rate. This forces a trade-off between temporal and spatial resolution. Here, we propose a model-based deep learning solution that aims to reconstruct images from data that has been beamformed by under-sampling the number of channels by a factor of 4. By exploiting the physics based measurement model, we achieve better performance and consistency in our predictions when compared to benchmark models. This lowers the computational load on existing hardware and enables in exploring our ability to run multiple visualisation modalities simultaneously, without a loss of temporal resolution.
Originele taal-2Engels
Titel2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's1221-1225
Aantal pagina's5
ISBN van elektronische versie978-1-6654-0540-9
DOI's
StatusGepubliceerd - 27 apr. 2022
EvenementICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) - Virtual, Online, Singapore, Singapore
Duur: 23 mei 202227 mei 2022
Congresnummer: 47
https://2022.ieeeicassp.org/

Congres

CongresICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Verkorte titelICASSP 2022
Land/RegioSingapore
StadSingapore
Periode23/05/2227/05/22
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Deep Proximal Unfolding For Image Recovery from Under-Sampled Channel Data in Intravascular Ultrasound'. Samen vormen ze een unieke vingerafdruk.

Citeer dit