Deep physiological arousal detection in a driving simulator using wearable sensors

Aaqib Saeed, Stojan Trajanovski, Maurice van Keulen, Jan van Erp

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

22 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

Driving is an activity that requires considerable alertness. Insufficient attention, imperfect perception, inadequate information processing, and sub-optimal arousal are possible causes of poor human performance. Understanding of these causes and the implementation of effective remedies is of key importance to increase traffic safety and improve driver's well-being. For this purpose, we used deep learning algorithms to detect arousal level, namely, under-aroused, normal and over-aroused for professional truck drivers in a simulated environment. The physiological signals are collected from 11 participants by wrist wearable devices. We presented a cost effective ground-truth generation scheme for arousal based on a subjective measure of sleepiness and score of stress stimuli. On this dataset, we evaluated a range of deep neural network models for representation learning as an alternative to handcrafted feature extraction. Our results show that a 7-layers convolutional neural network trained on raw physiological signals (such as heart rate, skin conductance and skin temperature) outperforms a baseline neural network and denoising autoencoder models with weighted F-score of 0.82 vs. 0.75 and Kappa of 0.64 vs. 0.53, respectively. The proposed convolutional model not only improves the overall results but also enhances the detection rate for every driver in the dataset as determined by leave-one-subject-out cross-validation.

Originele taal-2Engels
TitelProceeding - 17th IEEE International Conference on Data Mining Workshops, ICDMW 2017
RedacteurenRaju Gottumukkala, George Karypis, Vijay Raghavan, Xindong Wu, Lucio Miele, Srinivas Aluru, Xia Ning, Guozhu Dong
UitgeverijIEEE Computer Society
Pagina's486-493
Aantal pagina's8
ISBN van elektronische versie9781538614808, 978-1-5386-3800-2
ISBN van geprinte versie978-1-5386-3801-9
DOI's
StatusGepubliceerd - 15 dec. 2017
Extern gepubliceerdJa
Evenement17th IEEE International Conference on Data Mining Workshops, (ICDMW2017) - New Orleans, Verenigde Staten van Amerika
Duur: 18 nov. 201721 nov. 2017
http://icdm2017.bigke.org/

Congres

Congres17th IEEE International Conference on Data Mining Workshops, (ICDMW2017)
Verkorte titelICDMW2017
Land/RegioVerenigde Staten van Amerika
StadNew Orleans
Periode18/11/1721/11/17
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Deep physiological arousal detection in a driving simulator using wearable sensors'. Samen vormen ze een unieke vingerafdruk.

Citeer dit