Deep learning versus traditional machine learning methods for aggregated energy demand prediction

N.G. Paterakis, E. Mocanu, M. Gibescu, B. Stappers, W. van Alst

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

16 Citaten (Scopus)
8 Downloads (Pure)

Samenvatting

In this paper the more advanced, in comparison with traditional machine learning approaches, deep learning methods are explored with the purpose of accurately predicting the aggregated energy consumption. Despite the fact that a wide range of machine learning methods have been applied to probabilistic energy prediction, the deep learning ones certainly represent the state-of-the-art artificial intelligence methods with remarkable success in a spectrum of practical applications. In particular, the use of Multi Layer Perceptrons, recently enhanced with deep learning capabilities, is proposed. Furthermore, its performance is compared with the most commonly used machine learning methods, such as Support Vector Machines, Gaussian Processes, Regression Trees, Ensemble Boosting and Linear Regression. The analysis of the day-ahead energy prediction demonstrates that different prediction methods present significantly different levels of accuracy in the case of a challenging dataset that comprises an interesting mix of consumers, wind and solar generation. The results show that Multi Layer Perceptrons outperform all the eight methods used as a benchmark in this study.

Originele taal-2Engels
Titel2017 IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT-Europe 2017 - Proceedings
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's1-6
Aantal pagina's6
ISBN van elektronische versie9781538619537
DOI's
StatusGepubliceerd - 16 jan 2018
Evenement2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe 2017) - Politecnico di Torino, Torino, Italië
Duur: 26 sep 201729 sep 2017
Congresnummer: 7
http://sites.ieee.org/isgt-europe-2017/

Congres

Congres2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe 2017)
Verkorte titelISGT Europe 2017
LandItalië
StadTorino
Periode26/09/1729/09/17
Internet adres

Vingerafdruk Duik in de onderzoeksthema's van 'Deep learning versus traditional machine learning methods for aggregated energy demand prediction'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Paterakis, N. G., Mocanu, E., Gibescu, M., Stappers, B., & van Alst, W. (2018). Deep learning versus traditional machine learning methods for aggregated energy demand prediction. In 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT-Europe 2017 - Proceedings (blz. 1-6). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/ISGTEurope.2017.8260289