Deep learning velocity signals allow quantifying turbulence intensity

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Citaat (Scopus)

Samenvatting

Turbulence, the ubiquitous and chaotic state of fluid motions, is characterized by strong and statistically nontrivial fluctuations of the velocity field, and it can be quantitatively described only in terms of statistical averages. Strong nonstationarities impede statistical convergence, precluding quantifying turbulence, for example, in terms of turbulence intensity or Reynolds number. Here, we show that by using deep neural networks, we can accurately estimate the Reynolds number within 15% accuracy, from a statistical sample as small as two large-scale eddy turnover times. In contrast, physics-based statistical estimators are limited by the convergence rate of the central limit theorem and provide, for the same statistical sample, at least a hundredfold larger error. Our findings open up previously unexplored perspectives and the possibility to quantitatively define and, therefore, study highly nonstationary turbulent flows as ordinarily found in nature and in industrial processes.
Originele taal-2Engels
Artikelnummereaba7281
Aantal pagina's5
TijdschriftScience Advances
Volume7
Nummer van het tijdschrift12
DOI's
StatusGepubliceerd - 17 mrt 2021

Vingerafdruk Duik in de onderzoeksthema's van 'Deep learning velocity signals allow quantifying turbulence intensity'. Samen vormen ze een unieke vingerafdruk.

Citeer dit