Deep learning in ultrasound imaging

Ruud J.G. van Sloun (Corresponding author), Regev Cohen, Yonina C. Eldar

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

3 Citaten (Scopus)
1 Downloads (Pure)


In this article, we consider deep learning strategies in ultrasound systems, from the front end to advanced applications. Our goal is to provide the reader with a broad understanding of the possible impact of deep learning methodologies on many aspects of ultrasound imaging. In particular, we discuss methods that lie at the interface of signal acquisition and machine learning, exploiting both data structure (e.g., sparsity in some domain) and data dimensionality (big data) already at the raw radio-frequency channel stage. As some examples, we outline efficient and effective deep learning solutions for adaptive beamforming and adaptive spectral Doppler through artificial agents, learn compressive encodings for the color Doppler, and provide a framework for structured signal recovery by learning fast approximations of iterative minimization problems, with applications to clutter suppression and super-resolution ultrasound. These emerging technologies may have a considerable impact on ultrasound imaging, showing promise across key components in the receive processing chain.

Originele taal-2Engels
Pagina's (van-tot)11-29
Aantal pagina's19
TijdschriftProceedings of the IEEE
Nummer van het tijdschrift1
StatusGepubliceerd - jan 2020

Vingerafdruk Duik in de onderzoeksthema's van 'Deep learning in ultrasound imaging'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit