Deep learning for objective quality assessment of 3D images

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

29 Citaten (Scopus)
343 Downloads (Pure)

Samenvatting

Improving the users' Quality of Experience (QoE) in modern 3D Multimedia Systems is a challenging proposition, mainly due to our limited knowledge of 3D image Quality Assessment algorithms. While subjective QoE methods would better reflect the nature of human perception, these are not suitable in real-time automation cases. In this paper we tackle this issue from a new angle, using deep learning to make predictions on the user's QoE rather than trying to measure it through deterministic algorithms. We benchmark our method, dubbed Quality of Experience for 3D images through Factored Third Order Restricted Boltzmann Machine (Q3D-RBM), with subjective QoE methods, to determine its accuracy for different types of 3D images. The outcome is a Reduced Reference QoE assessment process for automatic image assessment and has significant potential to be extended to work on 3D video assessment.
Originele taal-2Engels
TitelProceedings of the IEEE International Conference on Image Processing 2014 (ICIP 2014), 27-30 October 2014, Paris, France
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's758-762
DOI's
StatusGepubliceerd - 2014
Evenement21st IEEE International Conference on Image Processing (ICIP 2014) - Paris, Frankrijk
Duur: 27 okt. 201430 okt. 2014
Congresnummer: 21
http://www.icip2014.org/

Congres

Congres21st IEEE International Conference on Image Processing (ICIP 2014)
Verkorte titelICIP 2014
Land/RegioFrankrijk
StadParis
Periode27/10/1430/10/14
AnderICIP 2014
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Deep learning for objective quality assessment of 3D images'. Samen vormen ze een unieke vingerafdruk.

Citeer dit