Deep convolutional gaussian mixture model for stain-color normalization of histopathological images

Farhad Ghazvinian Zanjani, Svitlana Zinger, Peter H.N. de With

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

12 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

Automated microscopic analysis of stained histopathological images is degraded by the amount of color and intensity variations in data. This paper presents a novel unsupervised probabilistic approach by integrating a convolutional neural network (CNN) and the Gaussian mixture model (GMM) in a unified framework, which jointly optimizes the modeling and normalizing the color and intensity of hematoxylin- and eosin-stained (H&E) histological images. In contrast to conventional GMM-based methods that are applied only on the color distribution of data for stain color normalization, our proposal learns how to cluster the tissue structures according to their shape and appearance and simultaneously fits a multivariate GMM to the data. This approach is more robust than standard GMM in the presence of strong staining variations because fitting the GMM is conditioned on the appearance of tissue structures in the density channel of an image. Performing a gradient descent optimization in an end-to-end learning, the network learns to maximize the log-likelihood of data given estimated parameters of multivariate Gaussian distributions. Our method does not need ground truth, shape and color assumptions of image contents or manual tuning of parameters and thresholds which makes it applicable to a wide range of histopathological images. Experiments show that our proposed method outperforms the state-of-the-art algorithms in terms of achieving a higher color constancy.

Originele taal-2Engels
TitelMedical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
RedacteurenGabor Fichtinger, Christos Davatzikos, Carlos Alberola-López, Alejandro F. Frangi, Julia A. Schnabel
Plaats van productieCham
UitgeverijSpringer
Pagina's274-282
Aantal pagina's9
ISBN van elektronische versie978-3-030-00934-2
ISBN van geprinte versie978-3-030-00933-5
DOI's
StatusGepubliceerd - 26 sep. 2018
Evenement21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spanje
Duur: 16 sep. 201820 sep. 2018

Publicatie series

NaamLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11071 LNCS
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
Land/RegioSpanje
StadGranada
Periode16/09/1820/09/18

Vingerafdruk

Duik in de onderzoeksthema's van 'Deep convolutional gaussian mixture model for stain-color normalization of histopathological images'. Samen vormen ze een unieke vingerafdruk.

Citeer dit