Deep Augmented MUSIC Algorithm for Data-Driven DoA Estimation

Julian P. Merkofer, Guy Revach, Nir Shlezinger, Ruud J.G. van Sloun

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

22 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

Direction of arrival (DoA) estimation is a crucial task in sensor array signal processing, giving rise to various successful model-based (MB) algorithms as well as recently developed data-driven (DD) methods. This paper introduces a new hybrid MB/DD DoA estimation architecture, based on the classical multiple signal classification (MUSIC) algorithm. Our approach augments crucial aspects of the original MUSIC structure with specifically designed neural architectures, allowing it to overcome certain limitations of the purely MB method, such as its inability to successfully localize coherent sources. The deep augmented MUSIC algorithm is shown to outperform its unaltered version with a superior resolution.

Originele taal-2Engels
Titel2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's3598-3602
Aantal pagina's5
ISBN van elektronische versie9781665405409
DOI's
StatusGepubliceerd - 27 apr. 2022
EvenementICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) - Virtual, Online, Singapore, Singapore
Duur: 23 mei 202227 mei 2022
Congresnummer: 47
https://2022.ieeeicassp.org/

Congres

CongresICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Verkorte titelICASSP 2022
Land/RegioSingapore
StadSingapore
Periode23/05/2227/05/22
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Deep Augmented MUSIC Algorithm for Data-Driven DoA Estimation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit