Samenvatting
This paper presents a deep Inverse Reinforcement Learning (IRL) framework that can learn an a priori unknown number of nonlinear reward functions from unlabeled experts’ demonstrations. For this purpose, we employ the tools from Dirichlet processes and propose an adaptive approach to simultaneously account for both complex and unknown number of reward functions. Using the conditional maximum entropy principle, we model the experts’ multi-intention behaviors as a mixture of latent intention distributions and derive two algorithms to estimate the parameters of the deep reward network along with the number of experts’ intentions from unlabeled demonstrations. The proposed algorithms are evaluated on three benchmarks, two of which have been specifically extended in this study for multi-intention IRL, and compared with well-known baselines. We demonstrate through several experiments the advantages of our algorithms over the existing approaches and the benefits of online inferring, rather than fixing beforehand, the number of expert’s intentions.
Originele taal-2 | Engels |
---|---|
Titel | Machine Learning and Knowledge Discovery in Databases. Research Track |
Subtitel | European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part I |
Redacteuren | Nuria Oliver, Fernando Pérez-Cruz, Stefan Kramer, Jesse Read, Jose A. Lozano |
Plaats van productie | Cham |
Uitgeverij | Springer |
Hoofdstuk | 13 |
Pagina's | 206-221 |
Aantal pagina's | 16 |
ISBN van elektronische versie | 978-3-030-86486-6 |
ISBN van geprinte versie | 978-3-030-86485-9 |
DOI's | |
Status | Gepubliceerd - 2021 |
Evenement | 2021 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2021 - Virtual, Bilbao, Spanje Duur: 13 sep. 2021 → 17 sep. 2021 https://2021.ecmlpkdd.org/ |
Publicatie series
Naam | Lecture Notes in Computer Science |
---|---|
Volume | 12975 |
ISSN van geprinte versie | 0302-9743 |
ISSN van elektronische versie | 1611-3349 |
Naam | Lecture Notes in Artificial Intelligence (LNAI) |
---|---|
Volume | 12975 |
Congres
Congres | 2021 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2021 |
---|---|
Verkorte titel | ECML PKDD |
Land/Regio | Spanje |
Stad | Bilbao |
Periode | 13/09/21 → 17/09/21 |
Internet adres |
Bibliografische nota
Publisher Copyright:© 2021, Springer Nature Switzerland AG.
Financiering
Acknowledgments. This research has received funding from ECSEL JU in collaboration with the European Union’s 2020 Framework Programme and National Authorities, under grant agreement no. 783190.
Financiers | Financiernummer |
---|---|
European Union’s Horizon Europe research and innovation programme | 783190 |
Electronic Components and Systems for European Leadership |