Deep Adaptive Multi-intention Inverse Reinforcement Learning

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

4 Citaten (Scopus)

Samenvatting

This paper presents a deep Inverse Reinforcement Learning (IRL) framework that can learn an a priori unknown number of nonlinear reward functions from unlabeled experts’ demonstrations. For this purpose, we employ the tools from Dirichlet processes and propose an adaptive approach to simultaneously account for both complex and unknown number of reward functions. Using the conditional maximum entropy principle, we model the experts’ multi-intention behaviors as a mixture of latent intention distributions and derive two algorithms to estimate the parameters of the deep reward network along with the number of experts’ intentions from unlabeled demonstrations. The proposed algorithms are evaluated on three benchmarks, two of which have been specifically extended in this study for multi-intention IRL, and compared with well-known baselines. We demonstrate through several experiments the advantages of our algorithms over the existing approaches and the benefits of online inferring, rather than fixing beforehand, the number of expert’s intentions.

Originele taal-2Engels
TitelMachine Learning and Knowledge Discovery in Databases. Research Track
SubtitelEuropean Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part I
RedacteurenNuria Oliver, Fernando Pérez-Cruz, Stefan Kramer, Jesse Read, Jose A. Lozano
Plaats van productieCham
UitgeverijSpringer
Hoofdstuk13
Pagina's206-221
Aantal pagina's16
ISBN van elektronische versie978-3-030-86486-6
ISBN van geprinte versie978-3-030-86485-9
DOI's
StatusGepubliceerd - 2021
Evenement2021 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2021 - Virtual, Bilbao, Spanje
Duur: 13 sep. 202117 sep. 2021
https://2021.ecmlpkdd.org/

Publicatie series

NaamLecture Notes in Computer Science
Volume12975
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349
NaamLecture Notes in Artificial Intelligence (LNAI)
Volume12975

Congres

Congres2021 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2021
Verkorte titelECML PKDD
Land/RegioSpanje
StadBilbao
Periode13/09/2117/09/21
Internet adres

Bibliografische nota

Publisher Copyright:
© 2021, Springer Nature Switzerland AG.

Financiering

Acknowledgments. This research has received funding from ECSEL JU in collaboration with the European Union’s 2020 Framework Programme and National Authorities, under grant agreement no. 783190.

FinanciersFinanciernummer
European Union’s Horizon Europe research and innovation programme783190
Electronic Components and Systems for European Leadership

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Deep Adaptive Multi-intention Inverse Reinforcement Learning'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit