Decoupling multivariate functions using a non-parametric filtered CPD approach

Jan Decuyper, Koen Tiels, Siep Weiland, Johan Schoukens

Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelpeer review

7 Citaten (Scopus)
122 Downloads (Pure)

Samenvatting

Black-box model structures are dominated by large multivariate functions. Usually a generic basis function expansion is used, e.g. a polynomial basis, and the parameters of the function are tuned given the data. This is a pragmatic and often necessary step considering the black-box nature of the problem. However, having identified a suitable function, there is no need to stick to the original basis. So-called decoupling techniques aim at translating multivariate functions into an alternative basis, thereby both reducing the number of parameters and retrieving underlying structure. In this work a filtered canonical polyadic decomposition (CPD) is introduced. It is a non-parametric method which is able to retrieve decoupled functions even when facing non-unique decompositions. Tackling this obstacle paves the way for a large number of modelling applications.

Originele taal-2Engels
Pagina's (van-tot)451-456
Aantal pagina's6
TijdschriftIFAC-PapersOnLine
Volume54
Nummer van het tijdschrift7
DOI's
StatusGepubliceerd - 1 jul. 2021
Evenement19th IFAC Symposium on System Identification (SYSID 2021) - Virtual, Padova, Italië
Duur: 13 jul. 202116 jul. 2021
Congresnummer: 19
https://www.sysid2021.org/

Bibliografische nota

Publisher Copyright:
© 2021 The Authors.

Financiering

This work was supported by the Flemish fund for scientific research FWO under license number G0068.18N.

Vingerafdruk

Duik in de onderzoeksthema's van 'Decoupling multivariate functions using a non-parametric filtered CPD approach'. Samen vormen ze een unieke vingerafdruk.

Citeer dit