Decoding error-correcting codes with Gröbner bases

S. Bulygin, G.R. Pellikaan

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

The decoding of arbitrary linear block codes is accomplished by solving a system of quadratic equations by means of Buchberger’s algorithm for finding a Gröbner basis. This generalizes the algorithm of Berlekamp-Massey for decoding Reed Solomon, Goppa and cyclic codes up to half the true minimum distance by intro ducing the unknown syndromes as variables. The complexity of this algorithm is exponential and the complexity coefficient is measured under the assumption that the over-determined system of quadratic equations is semi-regular using the results of Bardet et al. [5]. The complexity is compared to existing bounded distance decoding algorithms. Our method can be extended to complete and generic decoding, and to finding the minimum distance and the complete weight distribution.
Originele taal-2Engels
TitelProceedings of the 28th Symposium on Information Theory in the Benelux, 24-25 May 2007, Enschede, The Netherlands
RedacteurenR. Veldhuis, H. Cronie, H. Hoeksema
Plaats van productieEnschede
UitgeverijUniversiteit Twente
Pagina's3-10
ISBN van geprinte versie978-90-365-2509-1
StatusGepubliceerd - 2007

Vingerafdruk

Duik in de onderzoeksthema's van 'Decoding error-correcting codes with Gröbner bases'. Samen vormen ze een unieke vingerafdruk.

Citeer dit