Debiasing of SRAM PUFs: selection and balancing

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)

Samenvatting

Fuzzy commitment is used to bind a secret key to an SRAM-PUF observation vector. The fuzzy commitment scheme is secure as long as the observation vector has full entropy. Here, we assume that the observation vectors are biased, and explore two elementary schemes for debiasing: Selection and balancing. We study the performance of the schemes from an information theoretic perspective.

Originele taal-2Engels
Titel2019 IEEE International Workshop on Information Forensics and Security, WIFS 2019
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Aantal pagina's6
ISBN van elektronische versie9781728132174
DOI's
StatusGepubliceerd - dec 2019
Evenement2019 IEEE International Workshop on Information Forensics and Security, WIFS 2019 - Delft, Nederland
Duur: 9 dec 201912 dec 2019

Congres

Congres2019 IEEE International Workshop on Information Forensics and Security, WIFS 2019
LandNederland
StadDelft
Periode9/12/1912/12/19

Vingerafdruk Duik in de onderzoeksthema's van 'Debiasing of SRAM PUFs: selection and balancing'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Kusters, L., & Willems, F. M. J. (2019). Debiasing of SRAM PUFs: selection and balancing. In 2019 IEEE International Workshop on Information Forensics and Security, WIFS 2019 [9035094] Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/WIFS47025.2019.9035094