TY - JOUR
T1 - DC-bias for Optical OFDM in Visible Light Communications
AU - Deng, Xiong
AU - Mardanikorani, Shokoufeh
AU - Zhou, Guofu
AU - Linnartz, J.P.
PY - 2019
Y1 - 2019
N2 - The requirement of a DC-bias is known to make DC-biased Optical Orthogonal Frequency Division Multiplexing (DCO-OFDM) less energy efficient. This can be improved by Asymmetrically Clipped Optical OFDM (ACO-OFDM), Pulse Amplitude Modulated OFDM (PAM-OFDM) or Flip-OFDM, but these variants use the bandwidth inefficiently. Our trade-off between energy and spectrum efficiency considers a given limited channel bandwidth of the Light Emitting Diode (LED) and then attempts to get the highest throughput per unit of energy. We investigate previous findings that clipped OFDM can be more attractive in a low-SNR regime. More specifically, we consider Visible Light Communication (VLC) in which the average light level, i.e., the bias, is prescribed by illumination requirements, thus comes for free. ACO/PAM/Flip-OFDM can convert the DC-bias into power for communication, but all variants of OFDM, including DCO-OFDM consume extra electrical power. We conclude that in this scenario, advantages attributed to ACO/PAM/Flip-OFDM vanish, as DCO-OFDM outperforms its variants in all SNR conditions, in terms of achieved throughput over a bandlimited channel as a function of extra electrical power required. For hybrid solutions, such as Asymmetrically clipped DC biased Optical OFDM (ADO-OFDM) and Hybrid ACO-OFDM (HACO-OFDM), we optimize a new adaptive power and rate splitting between odd (clipped) and even (biased/clipped) subcarriers to balance power and bandwidth efficiency.
AB - The requirement of a DC-bias is known to make DC-biased Optical Orthogonal Frequency Division Multiplexing (DCO-OFDM) less energy efficient. This can be improved by Asymmetrically Clipped Optical OFDM (ACO-OFDM), Pulse Amplitude Modulated OFDM (PAM-OFDM) or Flip-OFDM, but these variants use the bandwidth inefficiently. Our trade-off between energy and spectrum efficiency considers a given limited channel bandwidth of the Light Emitting Diode (LED) and then attempts to get the highest throughput per unit of energy. We investigate previous findings that clipped OFDM can be more attractive in a low-SNR regime. More specifically, we consider Visible Light Communication (VLC) in which the average light level, i.e., the bias, is prescribed by illumination requirements, thus comes for free. ACO/PAM/Flip-OFDM can convert the DC-bias into power for communication, but all variants of OFDM, including DCO-OFDM consume extra electrical power. We conclude that in this scenario, advantages attributed to ACO/PAM/Flip-OFDM vanish, as DCO-OFDM outperforms its variants in all SNR conditions, in terms of achieved throughput over a bandlimited channel as a function of extra electrical power required. For hybrid solutions, such as Asymmetrically clipped DC biased Optical OFDM (ADO-OFDM) and Hybrid ACO-OFDM (HACO-OFDM), we optimize a new adaptive power and rate splitting between odd (clipped) and even (biased/clipped) subcarriers to balance power and bandwidth efficiency.
KW - DC bias
KW - Illumination
KW - OFDM
KW - VLC
KW - capacity
KW - communication
UR - http://www.scopus.com/inward/record.url?scp=85079760434&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2019.2928944
DO - 10.1109/ACCESS.2019.2928944
M3 - Article
VL - 7
SP - 98319
EP - 98330
JO - IEEE Access
JF - IEEE Access
SN - 2169-3536
M1 - 8763971
ER -