Day-ahead residential load forecasting with artificial neural network using smart meter data

B. Asare-Bediako, W.L. Kling, P.F. Ribeiro

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

19 Citaten (Scopus)

Samenvatting

Load forecasting is an important operational procedure for the electric industry particularly in a liberalized, deregulated environment. It enables the prediction of utilization of assets, provides input for load/supply balancing and supports optimal energy utilization. Current residential load forecasting is mainly based on the use of synthetic load profiles due to lack of or insufficient historical data. However, the advent of smart meters presents an opportunity for making accurate residential load forecasting possible. In this paper artificial neural networks are used with weather data and historical smart meter data for day-ahead load prediction. Extensive error analyses are performed on the model to investigate the suitability of the model for day-ahead prediction. The forecast model can be implemented by energy suppliers and distributed system operators for submission of day-ahead bids and for management of network assets respectively.
Originele taal-2Engels
TitelProceedings of the 2013 IEEE Grenoble PowerTech (POWERTECH), 16-20 June 2013, Grenoble, France
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's1-6
DOI's
StatusGepubliceerd - 2013
Evenement2013 IEEE Power Tech - Grenoble, Zwitserland
Duur: 16 jun 201320 jun 2013

Congres

Congres2013 IEEE Power Tech
Land/RegioZwitserland
StadGrenoble
Periode16/06/1320/06/13
AnderIEEE PES PowerTech

Vingerafdruk

Duik in de onderzoeksthema's van 'Day-ahead residential load forecasting with artificial neural network using smart meter data'. Samen vormen ze een unieke vingerafdruk.

Citeer dit