Database anomalous activities: Detection and quantification

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

12 Citaten (Scopus)
2 Downloads (Pure)

Samenvatting

The disclosure of sensitive data to unauthorized entities is a critical issue for organizations. Timely detection of data leakage is crucial to reduce possible damages. Therefore, breaches should be detected as early as possible, e.g., when data are leaving the database. In this paper, we focus on data leakage detection by monitoring database activities. We present a framework that automatically learns \emph{normal} user behavior, in terms of database activities, and detects anomalies as deviation from such behavior. In addition, our approach explicitly indicates the root cause of an anomaly. Finally, the framework assesses the severity of data leakages based on the sensitivity of the disclosed data. Keywords: Data Misuse, Data Leakage, Database Activity Monitoring, Data Leakage Quanti¿cation.
Originele taal-2Engels
TitelSECRYPT 2013 (Proceedings of the 10th International Conference on Security and Cryptography, Reykjavik, Iceland, July 29-31, 2013)
UitgeverijSciTePress Digital Library
Pagina's603-608
ISBN van geprinte versie978-989-8565-73-0
StatusGepubliceerd - 2013
Evenementconference; 10th International Conference on Security and Cryptography; 2013-07-29; 2013-07-31 -
Duur: 29 jul. 201331 jul. 2013

Congres

Congresconference; 10th International Conference on Security and Cryptography; 2013-07-29; 2013-07-31
Periode29/07/1331/07/13
Ander10th International Conference on Security and Cryptography

Vingerafdruk

Duik in de onderzoeksthema's van 'Database anomalous activities: Detection and quantification'. Samen vormen ze een unieke vingerafdruk.

Citeer dit