Data selection for training semantic segmentation CNNs with cross-dataset weak supervision

Panagiotis Meletis, R.R.F.M. Romijnders, Gijs Dubbelman

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

Training convolutional networks for semantic segmentation with strong (per-pixel) and weak (per-bounding-box) supervision requires a large amount of weakly labeled data. We propose two methods for selecting the most relevant data with weak supervision. The first method is designed for finding visually similar images without the need of labels and is based on modeling image representations with a Gaussian Mixture Model (GMM). As a byproduct of GMM modeling, we present useful insights on characterizing the data generating distribution. The second method aims at finding images with high object diversity and requires only the bounding box labels. Both methods are developed in the context of automated driving and experimentation is conducted on Cityscapes and Open Images datasets. We demonstrate performance gains by reducing the amount of employed weakly labeled images up to 100 times for Open Images and up to 20 times for Cityscapes.
Originele taal-2Engels
Titel2019 IEEE Intelligent Transportation Systems Conference (ITSC)
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's3682-3688
Aantal pagina's7
ISBN van elektronische versie978-1-5386-7024-8
DOI's
StatusGepubliceerd - okt. 2019
Evenement22nd International IEEE Conference on Intelligent Transportation Systems, ITSC 2019 - Auckland, Nieuw-Zeeland
Duur: 27 okt. 201930 okt. 2019
Congresnummer: 22

Congres

Congres22nd International IEEE Conference on Intelligent Transportation Systems, ITSC 2019
Verkorte titelITSC 2019
Land/RegioNieuw-Zeeland
StadAuckland
Periode27/10/1930/10/19

Vingerafdruk

Duik in de onderzoeksthema's van 'Data selection for training semantic segmentation CNNs with cross-dataset weak supervision'. Samen vormen ze een unieke vingerafdruk.

Citeer dit