Data science in healthcare: benefits, challenges and opportunities

Ziawasch Abedjan, Nozha Boujemaa, Stuart Campbell, Patricia Casla, Supriyo Chatterjea, Sergio Consoli, Cristobal Costa-Soria, Paul Czech, Marija Despenic, Chiara Garattini, Dirk Hamelinck, Adrienne Heinrich, Wessel Kraaij, Jacek Kustra, Aizea Lojo, Marga Martin Sanchez, Miguel A. Mayer, Matteo Melideo, Ernestina Menasalvas, Frank Moller AarestrupElvira Narro Artigot, Milan Petković, Diego Reforgiato Recupero, Alejandro Rodriguez Gonzalez, Gisele Roesems Kerremans, Roland Roller, Mario Romao, Stefan Ruping, Felix Sasaki, Wouter Spek, Nenad Stojanovic, Jack Thoms, Andrejs Vasiljevs, Wilfried Verachtert, Roel Wuyts

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureHoofdstukAcademicpeer review

1 Citaat (Scopus)

Uittreksel

The advent of digital medical data has brought an exponential increase in information available for each patient, allowing for novel knowledge generation methods to emerge. Tapping into this data brings clinical research and clinical practice closer together, as data generated in ordinary clinical practice can be used towards rapid-learning healthcare systems, continuously improving and personalizing healthcare. In this context, the recent use of Data Science technologies for healthcare is providing mutual benefits to both patients and medical professionals, improving prevention and treatment for several kinds of diseases. However, the adoption and usage of Data Science solutions for healthcare still require social capacity, knowledge and higher acceptance. The goal of this chapter is to provide an overview of needs, opportunities, recommendations and challenges of using (Big) Data Science technologies in the healthcare sector. This contribution is based on a recent whitepaper (http://www.bdva.eu/sites/default/files/Big%20Data%20Technologies%20in%20Healthcare.pdf) provided by the Big Data Value Association (BDVA) (http://www.bdva.eu/), the private counterpart to the EC to implement the BDV PPP (Big Data Value PPP) programme, which focuses on the challenges and impact that (Big) Data Science may have on the entire healthcare chain.

Originele taal-2Engels
TitelData Science for Healthcare
SubtitelMethodologies and Applications
RedacteurenS. Consoli, D. Reforgiato Recupero, M. Petković
Plaats van productieCham
UitgeverijSpringer
Pagina's3-38
Aantal pagina's36
ISBN van elektronische versie978-3-030-05249-2
ISBN van geprinte versie978-3-030-05248-5
DOI's
StatusGepubliceerd - 1 jan 2019

Vingerafdruk

Delivery of Health Care
Technology
Health Care Sector
Big data
Learning
Research
Therapeutics

Citeer dit

Abedjan, Z., Boujemaa, N., Campbell, S., Casla, P., Chatterjea, S., Consoli, S., ... Wuyts, R. (2019). Data science in healthcare: benefits, challenges and opportunities. In S. Consoli, D. Reforgiato Recupero, & M. Petković (editors), Data Science for Healthcare: Methodologies and Applications (blz. 3-38). Cham: Springer. https://doi.org/10.1007/978-3-030-05249-2_1
Abedjan, Ziawasch ; Boujemaa, Nozha ; Campbell, Stuart ; Casla, Patricia ; Chatterjea, Supriyo ; Consoli, Sergio ; Costa-Soria, Cristobal ; Czech, Paul ; Despenic, Marija ; Garattini, Chiara ; Hamelinck, Dirk ; Heinrich, Adrienne ; Kraaij, Wessel ; Kustra, Jacek ; Lojo, Aizea ; Sanchez, Marga Martin ; Mayer, Miguel A. ; Melideo, Matteo ; Menasalvas, Ernestina ; Aarestrup, Frank Moller ; Artigot, Elvira Narro ; Petković, Milan ; Recupero, Diego Reforgiato ; Gonzalez, Alejandro Rodriguez ; Kerremans, Gisele Roesems ; Roller, Roland ; Romao, Mario ; Ruping, Stefan ; Sasaki, Felix ; Spek, Wouter ; Stojanovic, Nenad ; Thoms, Jack ; Vasiljevs, Andrejs ; Verachtert, Wilfried ; Wuyts, Roel. / Data science in healthcare : benefits, challenges and opportunities. Data Science for Healthcare: Methodologies and Applications. redacteur / S. Consoli ; D. Reforgiato Recupero ; M. Petković. Cham : Springer, 2019. blz. 3-38
@inbook{e6cae323f0ab4c508b869a2bebbd7751,
title = "Data science in healthcare: benefits, challenges and opportunities",
abstract = "The advent of digital medical data has brought an exponential increase in information available for each patient, allowing for novel knowledge generation methods to emerge. Tapping into this data brings clinical research and clinical practice closer together, as data generated in ordinary clinical practice can be used towards rapid-learning healthcare systems, continuously improving and personalizing healthcare. In this context, the recent use of Data Science technologies for healthcare is providing mutual benefits to both patients and medical professionals, improving prevention and treatment for several kinds of diseases. However, the adoption and usage of Data Science solutions for healthcare still require social capacity, knowledge and higher acceptance. The goal of this chapter is to provide an overview of needs, opportunities, recommendations and challenges of using (Big) Data Science technologies in the healthcare sector. This contribution is based on a recent whitepaper (http://www.bdva.eu/sites/default/files/Big{\%}20Data{\%}20Technologies{\%}20in{\%}20Healthcare.pdf) provided by the Big Data Value Association (BDVA) (http://www.bdva.eu/), the private counterpart to the EC to implement the BDV PPP (Big Data Value PPP) programme, which focuses on the challenges and impact that (Big) Data Science may have on the entire healthcare chain.",
author = "Ziawasch Abedjan and Nozha Boujemaa and Stuart Campbell and Patricia Casla and Supriyo Chatterjea and Sergio Consoli and Cristobal Costa-Soria and Paul Czech and Marija Despenic and Chiara Garattini and Dirk Hamelinck and Adrienne Heinrich and Wessel Kraaij and Jacek Kustra and Aizea Lojo and Sanchez, {Marga Martin} and Mayer, {Miguel A.} and Matteo Melideo and Ernestina Menasalvas and Aarestrup, {Frank Moller} and Artigot, {Elvira Narro} and Milan Petković and Recupero, {Diego Reforgiato} and Gonzalez, {Alejandro Rodriguez} and Kerremans, {Gisele Roesems} and Roland Roller and Mario Romao and Stefan Ruping and Felix Sasaki and Wouter Spek and Nenad Stojanovic and Jack Thoms and Andrejs Vasiljevs and Wilfried Verachtert and Roel Wuyts",
year = "2019",
month = "1",
day = "1",
doi = "10.1007/978-3-030-05249-2_1",
language = "English",
isbn = "978-3-030-05248-5",
pages = "3--38",
editor = "S. Consoli and {Reforgiato Recupero}, D. and M. Petković",
booktitle = "Data Science for Healthcare",
publisher = "Springer",
address = "Germany",

}

Abedjan, Z, Boujemaa, N, Campbell, S, Casla, P, Chatterjea, S, Consoli, S, Costa-Soria, C, Czech, P, Despenic, M, Garattini, C, Hamelinck, D, Heinrich, A, Kraaij, W, Kustra, J, Lojo, A, Sanchez, MM, Mayer, MA, Melideo, M, Menasalvas, E, Aarestrup, FM, Artigot, EN, Petković, M, Recupero, DR, Gonzalez, AR, Kerremans, GR, Roller, R, Romao, M, Ruping, S, Sasaki, F, Spek, W, Stojanovic, N, Thoms, J, Vasiljevs, A, Verachtert, W & Wuyts, R 2019, Data science in healthcare: benefits, challenges and opportunities. in S Consoli, D Reforgiato Recupero & M Petković (redactie), Data Science for Healthcare: Methodologies and Applications. Springer, Cham, blz. 3-38. https://doi.org/10.1007/978-3-030-05249-2_1

Data science in healthcare : benefits, challenges and opportunities. / Abedjan, Ziawasch; Boujemaa, Nozha; Campbell, Stuart; Casla, Patricia; Chatterjea, Supriyo; Consoli, Sergio; Costa-Soria, Cristobal; Czech, Paul; Despenic, Marija; Garattini, Chiara; Hamelinck, Dirk; Heinrich, Adrienne; Kraaij, Wessel; Kustra, Jacek; Lojo, Aizea; Sanchez, Marga Martin; Mayer, Miguel A.; Melideo, Matteo; Menasalvas, Ernestina; Aarestrup, Frank Moller; Artigot, Elvira Narro; Petković, Milan; Recupero, Diego Reforgiato; Gonzalez, Alejandro Rodriguez; Kerremans, Gisele Roesems; Roller, Roland; Romao, Mario; Ruping, Stefan; Sasaki, Felix; Spek, Wouter; Stojanovic, Nenad; Thoms, Jack; Vasiljevs, Andrejs; Verachtert, Wilfried; Wuyts, Roel.

Data Science for Healthcare: Methodologies and Applications. redactie / S. Consoli; D. Reforgiato Recupero; M. Petković. Cham : Springer, 2019. blz. 3-38.

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureHoofdstukAcademicpeer review

TY - CHAP

T1 - Data science in healthcare

T2 - benefits, challenges and opportunities

AU - Abedjan, Ziawasch

AU - Boujemaa, Nozha

AU - Campbell, Stuart

AU - Casla, Patricia

AU - Chatterjea, Supriyo

AU - Consoli, Sergio

AU - Costa-Soria, Cristobal

AU - Czech, Paul

AU - Despenic, Marija

AU - Garattini, Chiara

AU - Hamelinck, Dirk

AU - Heinrich, Adrienne

AU - Kraaij, Wessel

AU - Kustra, Jacek

AU - Lojo, Aizea

AU - Sanchez, Marga Martin

AU - Mayer, Miguel A.

AU - Melideo, Matteo

AU - Menasalvas, Ernestina

AU - Aarestrup, Frank Moller

AU - Artigot, Elvira Narro

AU - Petković, Milan

AU - Recupero, Diego Reforgiato

AU - Gonzalez, Alejandro Rodriguez

AU - Kerremans, Gisele Roesems

AU - Roller, Roland

AU - Romao, Mario

AU - Ruping, Stefan

AU - Sasaki, Felix

AU - Spek, Wouter

AU - Stojanovic, Nenad

AU - Thoms, Jack

AU - Vasiljevs, Andrejs

AU - Verachtert, Wilfried

AU - Wuyts, Roel

PY - 2019/1/1

Y1 - 2019/1/1

N2 - The advent of digital medical data has brought an exponential increase in information available for each patient, allowing for novel knowledge generation methods to emerge. Tapping into this data brings clinical research and clinical practice closer together, as data generated in ordinary clinical practice can be used towards rapid-learning healthcare systems, continuously improving and personalizing healthcare. In this context, the recent use of Data Science technologies for healthcare is providing mutual benefits to both patients and medical professionals, improving prevention and treatment for several kinds of diseases. However, the adoption and usage of Data Science solutions for healthcare still require social capacity, knowledge and higher acceptance. The goal of this chapter is to provide an overview of needs, opportunities, recommendations and challenges of using (Big) Data Science technologies in the healthcare sector. This contribution is based on a recent whitepaper (http://www.bdva.eu/sites/default/files/Big%20Data%20Technologies%20in%20Healthcare.pdf) provided by the Big Data Value Association (BDVA) (http://www.bdva.eu/), the private counterpart to the EC to implement the BDV PPP (Big Data Value PPP) programme, which focuses on the challenges and impact that (Big) Data Science may have on the entire healthcare chain.

AB - The advent of digital medical data has brought an exponential increase in information available for each patient, allowing for novel knowledge generation methods to emerge. Tapping into this data brings clinical research and clinical practice closer together, as data generated in ordinary clinical practice can be used towards rapid-learning healthcare systems, continuously improving and personalizing healthcare. In this context, the recent use of Data Science technologies for healthcare is providing mutual benefits to both patients and medical professionals, improving prevention and treatment for several kinds of diseases. However, the adoption and usage of Data Science solutions for healthcare still require social capacity, knowledge and higher acceptance. The goal of this chapter is to provide an overview of needs, opportunities, recommendations and challenges of using (Big) Data Science technologies in the healthcare sector. This contribution is based on a recent whitepaper (http://www.bdva.eu/sites/default/files/Big%20Data%20Technologies%20in%20Healthcare.pdf) provided by the Big Data Value Association (BDVA) (http://www.bdva.eu/), the private counterpart to the EC to implement the BDV PPP (Big Data Value PPP) programme, which focuses on the challenges and impact that (Big) Data Science may have on the entire healthcare chain.

UR - http://www.scopus.com/inward/record.url?scp=85064376260&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-05249-2_1

DO - 10.1007/978-3-030-05249-2_1

M3 - Chapter

AN - SCOPUS:85064376260

SN - 978-3-030-05248-5

SP - 3

EP - 38

BT - Data Science for Healthcare

A2 - Consoli, S.

A2 - Reforgiato Recupero, D.

A2 - Petković, M.

PB - Springer

CY - Cham

ER -

Abedjan Z, Boujemaa N, Campbell S, Casla P, Chatterjea S, Consoli S et al. Data science in healthcare: benefits, challenges and opportunities. In Consoli S, Reforgiato Recupero D, Petković M, redacteurs, Data Science for Healthcare: Methodologies and Applications. Cham: Springer. 2019. blz. 3-38 https://doi.org/10.1007/978-3-030-05249-2_1