Data-Efficient Static Cost Optimization via Extremum-Seeking Control with Kernel-Based Function Approximation

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

18 Downloads (Pure)

Samenvatting

We present a novel type of sampled-data extremum-seeking control (ESC) aimed at speeding up convergence to the optimum and reducing the number of costly performance measurements in practical applications. The approach uses collected output measurements to construct online an approximation of the system's steady-state performance function using kernel-based function approximation. In regions where this approximation is detected to be sufficiently accurate, the proposed approach utilizes it to determine the search direction and compute a suitable optimizer gain for the update step. In regions where the approximation is not yet accurate, additional data is collected and employed in a ‘standard’ ESC update step, while also using it to refine the approximation of the performance function. By using the approximation of the performance function to determine the search direction and optimizer gain when possible, the number of required performance measurements and parameter update steps can be significantly reduced, e.g., with respectively 75% and 45 % in our simulation study involving a static cost function.
Originele taal-2Engels
Titel2023 62nd IEEE Conference on Decision and Control, CDC 2023
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's6761-6767
Aantal pagina's7
ISBN van elektronische versie979-8-3503-0124-3
DOI's
StatusGepubliceerd - 19 jan. 2024
Evenement2023 62nd IEEE Conference on Decision and Control (CDC) - Singapore, Singapore
Duur: 13 dec. 202315 dec. 2023
Congresnummer: 62

Congres

Congres2023 62nd IEEE Conference on Decision and Control (CDC)
Verkorte titelCDC 2023
Land/RegioSingapore
StadSingapore
Periode13/12/2315/12/23

Vingerafdruk

Duik in de onderzoeksthema's van 'Data-Efficient Static Cost Optimization via Extremum-Seeking Control with Kernel-Based Function Approximation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit