Data-driven modeling for electro-active liquid crystal polymer networks

Anahita Amiri (Corresponding author), Mohammad Fahim Shakib, Ines Lopez Arteaga, Nathan van de Wouw

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

8 Downloads (Pure)

Samenvatting

In this paper, we propose a data-driven nonlinear modeling approach to describe the dynamics of smart surfaces composed of electroactive liquid crystal networks (LCNs). LCNs are among the top candidates for materials to be employed in smart surfaces such as haptic displays. To realize such applications, the ability to predict an accurate LCN surface response as a function of the input signal is crucial. In this paper, we propose a data-driven modeling approach to identify the parameters of a dynamic model based on experimental data. The resulting model is used for feedforward control to compute the appropriate excitation parameters that ensure a certain desired surface deformation. This feedforward control approach is validated in a simulation study.

Originele taal-2Engels
Artikelnummer62
Aantal pagina's15
TijdschriftDiscover Applied Sciences
Volume7
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - jan. 2025

Bibliografische nota

Publisher Copyright:
© The Author(s) 2025.

Vingerafdruk

Duik in de onderzoeksthema's van 'Data-driven modeling for electro-active liquid crystal polymer networks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit