Data-driven H-norm estimation via expert advice

G. Rallo, S. Formentin, C.R. Rojas, T.A.E. Oomen, S.M. Savaresi

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

10 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

H-norm estimation is usually an important aspect of robust control design. The aim of this paper is to develop a data-driven estimation method exploiting iterative input design, without requiring parametric modeling. More specifically, the estimation problem is formulated as a sequential game, whose solution is derived within the prediction with expert advice framework. The proposed method is shown to be competitive with the state-of-the-art techniques.

Originele taal-2Engels
Titel2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's1560-1565
Aantal pagina's6
ISBN van elektronische versie978-1-5090-2873-3
DOI's
StatusGepubliceerd - 18 jan. 2018
Evenement56th IEEE Conference on Decision and Control (CDC 2017), 12-15 December 2017, Melbourne, Australia - Melbourne, VIC, Australia, Melbourne, Australië
Duur: 12 dec. 201715 dec. 2017
Congresnummer: 56
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8253407

Congres

Congres56th IEEE Conference on Decision and Control (CDC 2017), 12-15 December 2017, Melbourne, Australia
Verkorte titelCDC 2017
Land/RegioAustralië
StadMelbourne
Periode12/12/1715/12/17
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Data-driven H-norm estimation via expert advice'. Samen vormen ze een unieke vingerafdruk.

Citeer dit