Data driven design for online industrial auctions

Qing Chuan Ye, Jason Rhuggenaath, Yingqian Zhang, Sicco E. Verwer, Michiel Jurgen Hilgeman

Onderzoeksoutput: Bijdrage aan congresPaperAcademic

240 Downloads (Pure)

Samenvatting

Designing auction parameters for online industrial auctions is a complex problem due to highly heterogeneous items. Currently, online auctioneers
rely heavily on their experts in auction design. In this paper, we propose a data driven auction design framework that seamlessly combines prediction models and knowledge from experts into an optimization model. We show the proposed data driven approach improves upon the design from the experts for starting prices and display positions of items.
Originele taal-2Engels
Aantal pagina's7
StatusGepubliceerd - 2019
EvenementData Science Meets Optimisation - Macao, China
Duur: 11 aug. 2019 → …
https://sites.google.com/view/ijcai2019dso/

Workshop

WorkshopData Science Meets Optimisation
Verkorte titelDSO
Land/RegioChina
StadMacao
Periode11/08/19 → …
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Data driven design for online industrial auctions'. Samen vormen ze een unieke vingerafdruk.

Citeer dit