Data-Driven Decision-Making

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureHoofdstukAcademicpeer review

5 Downloads (Pure)

Samenvatting

One of the most important prerequisites for creating impact with data science is the embedding of data science results in decision-making. One could say that for securing data science impact, data science should start and end with an extensive analysis of the related decision-making. The full embedding of data science in decision-making is often labeled data-driven decision-making (DDDM). This includes the use of data and data science concepts in preparing, processing, executing, and evaluating decisions. In this chapter, we describe the most relevant characteristics of decision-making, which are related to the need for, the form of, and the use of DDDM. Furthermore, we define DDDM, we discuss the most important reasons for applying DDDM, and we introduce the available concepts for the use of DDDM in programmed and nonprogrammed decision-making. We also include a brief description of the link between DDDM and successful data entrepreneurship. We conclude by listing some topics for discussion and further research.
Originele taal-2Engels
TitelData Science for Entrepreneurship
SubtitelPrinciples and Methods for Data Engineering, Analytics, Entrepreneurship, and the Society
RedacteurenWerner Liebregts, Willem-Jan van den Heuvel, Arjan van den Born
Plaats van productieCham
UitgeverijSpringer
Hoofdstuk11
Pagina's239-277
Aantal pagina's39
ISBN van elektronische versie978-3-031-19554-9
ISBN van geprinte versie978-3-031-19553-2, 978-3-031-19556-3
DOI's
StatusGepubliceerd - 2023

Publicatie series

Naam Classroom Companion: Business book series (CCB)

Vingerafdruk

Duik in de onderzoeksthema's van 'Data-Driven Decision-Making'. Samen vormen ze een unieke vingerafdruk.

Citeer dit