Data-aware process mining : discovering decisions in processes using alignments

M. Leoni, de, W.M.P. Aalst, van der

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

101 Citaten (Scopus)
7 Downloads (Pure)

Samenvatting

Process discovery, i.e., learning process models from event logs, has attracted the attention of researchers and practitioners. Today, there exists a wide variety of process mining techniques that are able to discover the control-flow of a process based on event data. These techniques are able to identify decision points, but do not analyze data flow to find rules explaining why individual cases take a particular path. Fortunately, recent advances in conformance checking can be used to align an event log with data and a process model with decision points. These alignments can be used to generate a well-defined classification problem per decision point. This way data flow and guards can be discovered and added to the process model.
Originele taal-2Engels
Titel28th Annual ACM Symposium on Applied Computing (Coimbra, Portugal, March 18-22, 2013)
Plaats van productieNew York NY
UitgeverijAssociation for Computing Machinery, Inc
Pagina's1454-1461
ISBN van geprinte versie978-1-4503-1656-9
DOI's
StatusGepubliceerd - 2013
Evenement28th ACM Symposium on Applied Computing (SAC 2013) - Coimbra, Portugal
Duur: 18 mrt 201322 mrt 2013
Congresnummer: 28

Congres

Congres28th ACM Symposium on Applied Computing (SAC 2013)
Verkorte titelSAC 2013
LandPortugal
StadCoimbra
Periode18/03/1322/03/13
Ander28th Annual ACM Symposium on Applied Computing

Vingerafdruk Duik in de onderzoeksthema's van 'Data-aware process mining : discovering decisions in processes using alignments'. Samen vormen ze een unieke vingerafdruk.

Citeer dit