Cutting out the middleman: measuring nuclear area in histopathology slides without segmentation

M. Veta, P.J. van Diest, J.P.W. Pluim

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

15 Citaten (Scopus)
5 Downloads (Pure)

Samenvatting

The size of nuclei in histological preparations from excised breast tumors is predictive of patient outcome (large nuclei indicate poor outcome). Pathologists take into account nuclear size when performing breast cancer grading. In addition,the mean nuclear area (MNA) has been shown to have independent prognostic value. The straightforward approach to measuring nuclear size is by performing nuclei segmentation. We hypothesize that given an image of a tumor region with known nuclei locations,the area of the individual nuclei and region statistics such as the MNA can be reliably computed directly from the image data by employing a machine learning model,without the intermediate step of nuclei segmentation. Towards this goal,we train a deep convolutional neural network model that is applied locally at each nucleus location,and can reliably measure the area of the individual nuclei and the MNA. Furthermore,we show how such an approach can be extended to perform combined nuclei detection and measurement,which is reminiscent of granulometry.

Originele taal-2Engels
TitelMedical Image Computing and Computer-Assisted Intervention - MICCAI 2016 - 19th International Conference, Proceedings
UitgeverijSpringer
Pagina's632-639
Aantal pagina's8
ISBN van geprinte versie9783319467221
DOI's
StatusGepubliceerd - 2016

Publicatie series

NaamLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
UitgeverijSpringer
Volume9901
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Vingerafdruk Duik in de onderzoeksthema's van 'Cutting out the middleman: measuring nuclear area in histopathology slides without segmentation'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Veta, M., van Diest, P. J., & Pluim, J. P. W. (2016). Cutting out the middleman: measuring nuclear area in histopathology slides without segmentation. In Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016 - 19th International Conference, Proceedings (blz. 632-639). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 9901). Springer. https://doi.org/10.1007/978-3-319-46723-8_73