TY - JOUR
T1 - Crosstalk interactions between transcription factors ERRα and PPARα assist PPARα-mediated gene expression
AU - Desmet, Sofie J.
AU - Thommis, Jonathan
AU - Vanderhaeghen, Tineke
AU - Vandenboorn, Edmee M.F.
AU - Clarisse, Dorien
AU - Li, Yunkun
AU - Timmermans, Steven
AU - Fijalkowska, Daria
AU - Ratman, Dariusz
AU - Van Hamme, Evelien
AU - De Cauwer, Lode
AU - Staels, Bart
AU - Brunsveld, Luc
AU - Peelman, Frank
AU - Libert, Claude
AU - Tavernier, Jan
AU - De Bosscher, Karolien
PY - 2024/6
Y1 - 2024/6
N2 - Objective: The peroxisome proliferator-activated receptor α (PPARα) is a transcription factor driving target genes involved in fatty acid β-oxidation. To what extent various PPARα interacting proteins may assist its function as a transcription factor is incompletely understood. An ORFeome-wide unbiased mammalian protein–protein interaction trap (MAPPIT) using PPARα as bait revealed a PPARα-ligand-dependent interaction with the orphan nuclear receptor estrogen-related receptor α (ERRα). The goal of this study was to characterize the nature of the interaction in depth and to explore whether it was of physiological relevance. Methods: We used orthogonal protein–protein interaction assays and pharmacological inhibitors of ERRα in various systems to confirm a functional interaction and study the impact of crosstalk mechanisms. To characterize the interaction surfaces and contact points we applied a random mutagenesis screen and structural overlays. We pinpointed the extent of reciprocal ligand effects of both nuclear receptors via coregulator peptide recruitment assays. On PPARα targets revealed from a genome-wide transcriptome analysis, we performed an ERRα chromatin immunoprecipitation analysis on both fast and fed mouse livers. Results: Random mutagenesis scanning of PPARα's ligand-binding domain and coregulator profiling experiments supported the involvement of (a) bridging coregulator(s), while recapitulation of the interaction in vitro indicated the possibility of a trimeric interaction with RXRα. The PPARα·ERRα interaction depends on 3 C-terminal residues within helix 12 of ERRα and is strengthened by both PGC1α and serum deprivation. Pharmacological inhibition of ERRα decreased the interaction of ERRα to ligand-activated PPARα and revealed a transcriptome in line with enhanced mRNA expression of prototypical PPARα target genes, suggesting a role for ERRα as a transcriptional repressor. Strikingly, on other PPARα targets, including the isolated PDK4 enhancer, ERRα behaved oppositely. Chromatin immunoprecipitation analyses demonstrate a PPARα ligand-dependent ERRα recruitment onto chromatin at PPARα-binding regions, which is lost following ERRα inhibition in fed mouse livers. Conclusions: Our data support the coexistence of multiple layers of transcriptional crosstalk mechanisms between PPARα and ERRα, which may serve to finetune the activity of PPARα as a nutrient-sensing transcription factor.
AB - Objective: The peroxisome proliferator-activated receptor α (PPARα) is a transcription factor driving target genes involved in fatty acid β-oxidation. To what extent various PPARα interacting proteins may assist its function as a transcription factor is incompletely understood. An ORFeome-wide unbiased mammalian protein–protein interaction trap (MAPPIT) using PPARα as bait revealed a PPARα-ligand-dependent interaction with the orphan nuclear receptor estrogen-related receptor α (ERRα). The goal of this study was to characterize the nature of the interaction in depth and to explore whether it was of physiological relevance. Methods: We used orthogonal protein–protein interaction assays and pharmacological inhibitors of ERRα in various systems to confirm a functional interaction and study the impact of crosstalk mechanisms. To characterize the interaction surfaces and contact points we applied a random mutagenesis screen and structural overlays. We pinpointed the extent of reciprocal ligand effects of both nuclear receptors via coregulator peptide recruitment assays. On PPARα targets revealed from a genome-wide transcriptome analysis, we performed an ERRα chromatin immunoprecipitation analysis on both fast and fed mouse livers. Results: Random mutagenesis scanning of PPARα's ligand-binding domain and coregulator profiling experiments supported the involvement of (a) bridging coregulator(s), while recapitulation of the interaction in vitro indicated the possibility of a trimeric interaction with RXRα. The PPARα·ERRα interaction depends on 3 C-terminal residues within helix 12 of ERRα and is strengthened by both PGC1α and serum deprivation. Pharmacological inhibition of ERRα decreased the interaction of ERRα to ligand-activated PPARα and revealed a transcriptome in line with enhanced mRNA expression of prototypical PPARα target genes, suggesting a role for ERRα as a transcriptional repressor. Strikingly, on other PPARα targets, including the isolated PDK4 enhancer, ERRα behaved oppositely. Chromatin immunoprecipitation analyses demonstrate a PPARα ligand-dependent ERRα recruitment onto chromatin at PPARα-binding regions, which is lost following ERRα inhibition in fed mouse livers. Conclusions: Our data support the coexistence of multiple layers of transcriptional crosstalk mechanisms between PPARα and ERRα, which may serve to finetune the activity of PPARα as a nutrient-sensing transcription factor.
KW - ERRα
KW - Nuclear receptor
KW - Nuclear receptor crosstalk
KW - PGC1α
KW - PPARα
KW - Protein–protein interaction
UR - http://www.scopus.com/inward/record.url?scp=85191158136&partnerID=8YFLogxK
U2 - 10.1016/j.molmet.2024.101938
DO - 10.1016/j.molmet.2024.101938
M3 - Article
C2 - 38631478
AN - SCOPUS:85191158136
SN - 2212-8778
VL - 84
JO - Molecular Metabolism
JF - Molecular Metabolism
M1 - 101938
ER -