Cross-coupled iterative learning control for complex systems: A monotonically convergent and computationally efficient approach

Leontine Aarnoudse, Johan Kon, Koen Classens, Max van Meer, M.M. Poot, P.J.M.M. Tacx, Nard Strijbosch, Tom Oomen

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

2 Citaten (Scopus)
107 Downloads (Pure)

Samenvatting

Cross-coupled iterative learning control (ILC) can achieve high performance for manufacturing applications in which tracking a contour is essential for the quality of a product. The aim of this paper is to develop a framework for norm-optimal cross-coupled ILC that enables the use of exact contour errors that are calculated offline, and iteration-and time-varying weights. Conditions for the monotonic convergence of this iteration-varying ILC algorithm are developed. In addition, a resource-efficient implementation is proposed in which the ILC update law is reframed as a linear quadratic tracking problem, reducing the computational load significantly. The approach is illustrated on a simulation example.
Originele taal-2Engels
Titel61th IEEE Conference on Decision and Control
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's1485-1490
Aantal pagina's6
ISBN van elektronische versie978-1-6654-6761-2
DOI's
StatusGepubliceerd - 10 jan. 2023
Evenement2022 IEEE 61st Conference on Decision and Control (CDC) - The Marriott Cancún Collection, Cancun, Mexico
Duur: 6 dec. 20229 dec. 2022
Congresnummer: 61
https://cdc2022.ieeecss.org/

Congres

Congres2022 IEEE 61st Conference on Decision and Control (CDC)
Verkorte titelCDC 2022
Land/RegioMexico
StadCancun
Periode6/12/229/12/22
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Cross-coupled iterative learning control for complex systems: A monotonically convergent and computationally efficient approach'. Samen vormen ze een unieke vingerafdruk.

Citeer dit