Samenvatting
In this paper we study properties and invariants of matrix codes endowed with the rank metric and relate them to the covering radius. We introduce new tools for the analysis of rank-metric codes, such as puncturing and shortening constructions. We give upper bounds on the covering radius of a code by applying different combinatorial methods. The various bounds are then applied to the classes of maximal-rank-distance and quasi-maximal-rank-distance codes.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 927-944 |
Aantal pagina's | 18 |
Tijdschrift | SIAM Journal on Discrete Mathematics |
Volume | 31 |
Nummer van het tijdschrift | 2 |
DOI's | |
Status | Gepubliceerd - 2017 |