Counting matroids in minor-closed classes

R.A. Pendavingh, J.G. Pol, van der

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

2 Citaten (Scopus)
95 Downloads (Pure)


A flat cover is a collection of flats identifying the non-bases of a matroid. We introduce the notion of cover complexity, the minimal size of such a flat cover, as a measure for the complexity of a matroid, and present bounds on the number of matroids on n elements whose cover complexity is bounded. We apply cover complexity to show that the class of matroids without an N-minor is asymptotically small in case N is one of the sparse paving matroids U2,k, U3,6, P6, Q6 or R6, thus confirming a few special cases of a conjecture due to Mayhew, Newman, Welsh, and Whittle. On the other hand, we show a lower bound on the number of matroids without an M(K4)-minor which asymptotically matches the best known lower bound on the number of all matroids, due to Knuth.

Originele taal-2Engels
Pagina's (van-tot)126-147
Aantal pagina's22
TijdschriftJournal of Combinatorial Theory, Series B
StatusGepubliceerd - 1 mrt 2015


Duik in de onderzoeksthema's van 'Counting matroids in minor-closed classes'. Samen vormen ze een unieke vingerafdruk.

Citeer dit