Counterterrorism for Cyber-Physical Spaces: A Computer Vision Approach

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review


Simulating terrorist scenarios in cyber-physical spaces - -that is, urban open or (semi-) closed spaces combined with cyber-physical systems counterparts - -is challenging given the context and variables therein. This paper addresses the aforementioned issue with ALTer a framework featuring computer vision and Generative Adversarial Neural Networks (GANs) over terrorist scenarios. We obtained the data for the terrorist scenarios by creating a synthetic dataset, exploiting the Grand Theft Auto V (GTAV) videogame, and the Unreal Game Engine behind it, in combination with OpenStreetMap data. The results of the proposed approach show its feasibility to predict criminal activities in cyber-physical spaces. Moreover, the usage of our synthetic scenarios elicited from GTAV is promising in building datasets for cybersecurity and Cyber-Threat Intelligence (CTI) featuring simulated video gaming platforms. We learned that local authorities can simulate terrorist scenarios for their cities based on previous or related reference and this helps them in 3 ways: (1) better determine the necessary security measures; (2) better use the expertise of the authorities; (3) refine preparedness scenarios and drills for sensitive areas.

Originele taal-2Engels
TitelProceedings of the Working Conference on Advanced Visual Interfaces, AVI 2020
RedacteurenGenny Tortora, Giuliana Vitiello, Marco Winckler
UitgeverijAssociation for Computing Machinery, Inc
ISBN van elektronische versie9781450375351
StatusGepubliceerd - 28 sep 2020
Evenement2020 International Conference on Advanced Visual Interfaces, AVI 2020 - Salerno, Italië
Duur: 28 sep 20202 okt 2020

Publicatie series

NaamACM International Conference Proceeding Series


Congres2020 International Conference on Advanced Visual Interfaces, AVI 2020


Duik in de onderzoeksthema's van 'Counterterrorism for Cyber-Physical Spaces: A Computer Vision Approach'. Samen vormen ze een unieke vingerafdruk.

Citeer dit