Control variates for multivariate truncated probability density functions with application in system identification

Onderzoeksoutput: Bijdrage aan congresPoster

64 Downloads (Pure)

Samenvatting

Monte Carlo methods are useful for computing numerical approximations of expected values, especially when these expectations cannot be computed analytically. Nevertheless, these methods depend on random sampling. The accuracy of the numerical approximation depends on the number of samples used and convergence to the true value can be slow. Control variates provide a way to use the samples more efficiently and reduce the variance of the sample mean estimator. This poster considers the computation of control variates for multivariate truncated probability density functions and its application in hyperparameter estimation for regularized impulse response identification of Lebesgue-sampled systems. The use of control variates in this application reduces the computational cost of an expensive step in each iteration of the expectation-maximization (EM) algorithm.
Originele taal-2Engels
Aantal pagina's2
StatusGepubliceerd - sep. 2023
Evenement31st Workshop of the European Research Network on System Identification - Stockholm, Zweden
Duur: 24 sep. 202327 sep. 2023
Congresnummer: 31
https://www.kth.se/ernsi2023

Congres

Congres31st Workshop of the European Research Network on System Identification
Verkorte titelERNSI 2023
Land/RegioZweden
StadStockholm
Periode24/09/2327/09/23
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Control variates for multivariate truncated probability density functions with application in system identification'. Samen vormen ze een unieke vingerafdruk.

Citeer dit