Continuous approximation of stochastic models for wireless sensor networks

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)
5 Downloads (Pure)

Samenvatting

Stochastic analysis of wireless sensor networks becomes exceedingly hard as the number of nodes in a network grows large. In this paper we intend to address this issue by proposing a method of modeling large networks by dynamical systems rather than explicit Markov models, called Mean-Field Approximation. We verify the suitability of Mean-Field Approximation by analyzing ALOHA, by both studying a discrete model and a system of differential equations and then by comparing these models. We then extend the modeling technique in order to express characteristics of a network running a CSMA/CA protocol.
Originele taal-2Engels
Titel2015 IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT), 24 November 2015, Luxembourg City
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's1-6
Aantal pagina's6
DOI's
StatusGepubliceerd - 24 nov 2015

Vingerafdruk Duik in de onderzoeksthema's van 'Continuous approximation of stochastic models for wireless sensor networks'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Talebi, M., Groote, J. F., & Linnartz, J-P. (2015). Continuous approximation of stochastic models for wireless sensor networks. In 2015 IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT), 24 November 2015, Luxembourg City (blz. 1-6). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/SCVT.2015.7374240