Constructing simply laced Lie algebras from extremal elements

J. Draisma, J.C.H.W. Panhuis, in 't

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

4 Citaten (Scopus)
6 Downloads (Pure)

Samenvatting

For any finite graph G and any field K of characteristic unequal to 2, we construct an algebraic variety X over K whose K-points parametrize K-Lie algebras generated by extremal elements, corresponding to the vertices of the graph, with prescribed commutation relations, corresponding to the nonedges. After that, we study the case where G is a connected, simply laced Dynkin diagram of finite or affine type. We prove that X is then an affine space, and that all points in an open dense subset of X parametrize Lie algebras isomorphic to a single fixed Lie algebra. If G is of affine type, then this fixed Lie algebra is the split finite-dimensional simple Lie algebra corresponding to the associated finite-type Dynkin diagram. This gives a new construction of these Lie algebras, in which they come together with interesting degenerations, corresponding to points outside the open dense subset. Our results may prove useful for recognizing these Lie algebras.
Originele taal-2Engels
Pagina's (van-tot)551-572
TijdschriftAlgebra & Number Theory
Volume2
Nummer van het tijdschrift5
DOI's
StatusGepubliceerd - 2008

Vingerafdruk

Duik in de onderzoeksthema's van 'Constructing simply laced Lie algebras from extremal elements'. Samen vormen ze een unieke vingerafdruk.

Citeer dit