Constructing levels in arrangements and higher order Voronoi diagrams

P.K. Agarwal, M. Berg, de, J. Matousek, O. Schwarzkopf

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelpeer review

    72 Citaten (Scopus)
    130 Downloads (Pure)

    Samenvatting

    We give simple randomized incremental algorithms for computing the Amk-level in an arrangement of n lines in the plane or in an arrangement of n planes in $\Reals^3$. The expected running time of our algorithms is $O(nk+n\alpha(n)\log n)$ for the planarcase and O(nk2 + n log3n) for the three-dimensional case. Both bounds are optimal unless k is very small. The algorithm generalizes to computing the Amk-level in an arrangement of discs or x-monotone Jordan curves in the plane. Our approach can also compute the k-level; this yields a randomized algorithm for computing the order-k Voronoi diagram of n points in the plane in expected time O(k(n-k)log n + n log3n).
    Originele taal-2Engels
    Pagina's (van-tot)654-667
    TijdschriftSIAM Journal on Computing
    Volume27
    Nummer van het tijdschrift3
    DOI's
    StatusGepubliceerd - 1998

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Constructing levels in arrangements and higher order Voronoi diagrams'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit