Conservative polytopal mimetic discretization of the incompressible Navier–Stokes equations

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

3 Citaten (Scopus)
3 Downloads (Pure)


We discretize the incompressible Navier–Stokes equations on a polytopal mesh by using mimetic reconstruction operators. The resulting method conserves discrete mass, momentum, and kinetic energy in the inviscid limit, and determines the vorticity such that the global vorticity is consistent with the boundary conditions. To do this we introduce a dual mesh and show how the dual mesh can be completed to a cell-complex. We present existing mimetic reconstruction operators in a new symmetric way applicable to arbitrary dimension, use these to interpolate between primal and dual mesh and derive properties of these operators. Finally, we test both 2- and 3-dimensional versions of the method on a variety of complicated meshes to show its wide applicability. We numerically test the convergence of the method and verify the derived conservation statements.

Originele taal-2Engels
Pagina's (van-tot)443-473
Aantal pagina's31
TijdschriftJournal of Computational and Applied Mathematics
Nummer van het tijdschrift1 October 2018
StatusGepubliceerd - 1 okt 2018

Vingerafdruk Duik in de onderzoeksthema's van 'Conservative polytopal mimetic discretization of the incompressible Navier–Stokes equations'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit