Conservative mimetic cut-cell method for incompressible Navier-Stokes equations

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

5 Downloads (Pure)

Samenvatting

We introduce a mimetic Cartesian cut-cell method for incompressible viscous flow that conserves mass, momentum, and kinetic energy in the inviscid limit, and determines the vorticity such that the global vorticity is consistent with the boundary conditions. In particular we discuss how the no-slip boundary conditions should be applied in a conservative way on objects immersed in the Cartesian mesh. We use the method to compute the flow around a cylinder. We find a good comparison between our results and benchmark results for both a steady and an unsteady test case.

Originele taal-2Engels
TitelNumerical Mathematics and Advanced Applications ENUMATH 2017
RedacteurenFlorin Adrian Radu, Kundan Kumar, Inga Berre, Jan Martin Nordbotten, Iuliu Sorin Pop
Plaats van productieCham
UitgeverijSpringer
Pagina's1035-1043
Aantal pagina's9
ISBN van elektronische versie978-3-319-96415-7
ISBN van geprinte versie978-3-319-96414-0
DOI's
StatusGepubliceerd - 1 jan 2019
EvenementEuropean Conference on Numerical Mathematics and Advanced Applications, ENUMATH 2017 - Voss, Noorwegen
Duur: 25 sep 201729 sep 2017

Publicatie series

NaamLecture Notes in Computational Science and Engineering
Volume126
ISSN van geprinte versie1439-7358

Congres

CongresEuropean Conference on Numerical Mathematics and Advanced Applications, ENUMATH 2017
LandNoorwegen
StadVoss
Periode25/09/1729/09/17

Vingerafdruk Duik in de onderzoeksthema's van 'Conservative mimetic cut-cell method for incompressible Navier-Stokes equations'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Beltman, R., Anthonissen, M., & Koren, B. (2019). Conservative mimetic cut-cell method for incompressible Navier-Stokes equations. In F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, & I. S. Pop (editors), Numerical Mathematics and Advanced Applications ENUMATH 2017 (blz. 1035-1043). (Lecture Notes in Computational Science and Engineering; Vol. 126). Springer. https://doi.org/10.1007/978-3-319-96415-7_98