Consensus and reliability: the case of two binary classifiers

A.T.J.R. Cobbenhagen (Corresponding author), A. Carè, M.C. Campi, F.A. Ramponi, W.P.M.H. Heemels

Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelpeer review

2 Citaten (Scopus)
72 Downloads (Pure)

Samenvatting

In this paper we consider the problem of estimating the probability of misclas-sification when consensus is achieved between two binary classifiers that are trained on the same training set. Firstly, it is shown that, under consensus, the probability of misclassification compares favourably with that of the best of the two classifiers. Secondly, we provide accurate, and yet simple to compute, estimates of the probability of consensus and the probability of misclassification under consensus. This paper provides a theoretical basis for these estimates and demonstrates their accuracy by simulation results on a synthetic data set and on a medical data set for breast cancer cell classification.
Originele taal-2Engels
Pagina's (van-tot)73-78
Aantal pagina's6
TijdschriftIFAC-PapersOnLine
Volume52
Nummer van het tijdschrift20
DOI's
StatusGepubliceerd - 2019
Evenement8th IFAC Workshop on Distributed Estimation and Control in Networked Systems NECSYS 2019 - Chicago, Verenigde Staten van Amerika
Duur: 16 sep. 201917 sep. 2019
Congresnummer: 8

Vingerafdruk

Duik in de onderzoeksthema's van 'Consensus and reliability: the case of two binary classifiers'. Samen vormen ze een unieke vingerafdruk.

Citeer dit