Connectivity of random graphs after centrality-based vertex removal

Remco W. van der Hofstad (Corresponding author), Manish Pandey (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

11 Downloads (Pure)

Samenvatting

Centrality measures aim to indicate who is important in a network. Various notions of 'being important' give rise to different centrality measures. In this paper, we study how important the central vertices are for the connectivity structure of the network, by investigating how the removal of the most central vertices affects the number of connected components and the size of the giant component. We use local convergence techniques to identify the limiting number of connected components for locally converging graphs and centrality measures that depend on the vertex's neighbourhood. For the size of the giant, we prove a general upper bound. For the matching lower bound, we specialise to the case of degree centrality on one of the most popular models in network science, the configuration model, for which we show that removal of the highest-degree vertices destroys the giant most.

Originele taal-2Engels
Pagina's (van-tot)967-998
Aantal pagina's32
TijdschriftJournal of Applied Probability
Volume61
Nummer van het tijdschrift3
Vroegere onlinedatum23 feb. 2024
DOI's
StatusGepubliceerd - sep. 2024

Financiering

This work is supported in part by the Netherlands Organisation for Scientific Research (NWO) through the Gravitation NETWORKS grant no. 024.002.003.

FinanciersFinanciernummer
Nederlandse Organisatie voor Wetenschappelijk Onderzoek024.002.003
Nederlandse Organisatie voor Wetenschappelijk Onderzoek

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Connectivity of random graphs after centrality-based vertex removal'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit