Condition improvement for point relaxation in multigrid, subsonic Euler-flow computations

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    1 Citaat (Scopus)
    1 Downloads (Pure)


    Insight is given into the conditions of derivative matrices to be inverted in point-relaxation methods for 1-D and 2-D, first-order upwind-discretized Euler equations. Speed regimes are found where ill-conditioning of these matrices occurs; 1-D flow equations appear to be less well conditioned than 2-D flow equations. The ill-conditioning is easily improved by adding regularizing matrices to the derivative matrices. A smoothing analysis is made of point Gauss-Seidel relaxation applied to discrete Euler equations conditioned by such an additive matrix. The method is successfully applied to a very low-subsonic, steady, 2-D stagnation flow.
    Originele taal-2Engels
    Pagina's (van-tot)457-469
    TijdschriftApplied Numerical Mathematics
    Nummer van het tijdschrift4
    StatusGepubliceerd - 1995

    Vingerafdruk Duik in de onderzoeksthema's van 'Condition improvement for point relaxation in multigrid, subsonic Euler-flow computations'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit