Concatenating random matchings

Fabian Burghart, Paul Thévenin

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

4 Downloads (Pure)

Samenvatting

We consider the concatenation of t uniformly random perfect matchings on 2n vertices, where the operation of concatenation is inspired by the multiplication of generators of the Brauer algebra Bn(δ). For the resulting random string diagram Brn(t), we observe a giant component if and only if n is odd, and as t → ∞ we obtain asymptotic results concerning the number of loops, the size of the giant component, and the number of loops of a given shape. Moreover, we give a local description of the giant component. These results mainly rely on the use of renewal theory and the coding of connected components of Brn(t) by random vertex-exploration processes.

Originele taal-2Engels
Artikelnummer178
Aantal pagina's28
TijdschriftElectronic Journal of Probability
Volume29
DOI's
StatusGepubliceerd - 5 dec. 2024

Bibliografische nota

Publisher Copyright:
© 2024, Institute of Mathematical Statistics. All rights reserved.

Vingerafdruk

Duik in de onderzoeksthema's van 'Concatenating random matchings'. Samen vormen ze een unieke vingerafdruk.

Citeer dit